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Abstract

3D occupancy and scene flow offer a detailed and dy-
namic representation of 3D scene. Recognizing the sparsity
and complexity of 3D space, previous vision-centric meth-
ods have employed implicit learning-based approaches to
model spatial and temporal information. However, these
approaches struggle to capture local details and diminish
the model’s spatial discriminative ability. To address these
challenges, we propose a novel explicit state-based model-
ing method designed to leverage the occupied state to ren-
ovate the 3D features. Specifically, we propose a sparse
occlusion-aware attention mechanism, integrated with a
cascade refinement strategy, which accurately renovates
3D features with the guidance of occupied state informa-
tion. Additionally, we introduce a novel method for mod-
eling long-term dynamic interactions, which reduces com-
putational costs and preserves spatial information. Com-
pared to the previous state-of-the-art methods, our effi-
cient explicit renovation strategy not only delivers supe-
rior performance in terms of RayloU and mAVE for oc-
cupancy and scene flow prediction but also markedly re-
duces GPU memory usage during training, bringing it down
to 8.7GB. Our code is available on https://github.
com/1zzzzzm/STCOcc

1. Introduction

Accurate perception of 3D surrounding scenes is indeed vi-
tal for autonomous systems. The goal of occupancy and
scene flow prediction [1] is to segment the entire space into
3D voxels and to determine the semantic and flow informa-
tion of each voxel. This capability is crucial for understand-
ing the environment and making informed decisions, which
is well-suited for downstream tasks in autonomous systems,
such as mapping and planning [2, 4, 38, 40, 49].

Due to data sparsity and information redundancy in 3D
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Figure 1. (a) Explicit versus Implicit Modeling: We propose a
novel explicit state-based modeling approach that explicitly lever-
ages the occupied state to maintain feature sparsity and model
spatial details. (b) Comparison with Different Methods: Our
approach achieves state-of-the-art performance of RayloU and
mAVE with lower training costs.

space, employing efficient and robust approaches for 3D
feature processing is critical. Existing vision-centric meth-
ods [8, 9, 14-16, 21, 28, 30, 40, 44, 52] rely on implicit
learning-based method for modeling spatial and temporal
information, as shown in Fig. la. While these methods
optimize 3D reconstruction and long-term temporal fusion
through loss supervision, they face inherent limitations.
Specifically, the exclusive reliance on loss-driven training
hinders the model’s ability to capture fine-grained spatial
details and compromises the spatial discriminative capacity
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of learned features, ultimately reducing the effectiveness for
occupancy prediction tasks.

In this paper, we propose an explicit state-based model-
ing method that leverages the occupied state of 3D space
to refine spatial and temporal feature representations, as
shown in Fig. la. Our key insight stems from the inher-
ent geometric correspondence between the occupied state
and the 3D structure. Since the occupied state directly en-
codes the geometry of 3D space, it can serve as a robust
prior to guide feature learning. This geometric alignment
ensures that the feature space preserves structural fidelity,
thereby simplifying the learning process and enhancing the
discriminative power of the model.

We introduce STCOcc, a sparse Spatial-Temporal
Cascade renovation framework tailored for occupancy and
scene flow prediction. Within this framework, we present
a Spatial-Temporal Cascade Decoder designed to renovate
the 3D features both spatially and temporally, leveraging
the occupied state of the 3D space. Specifically, at each
stage, we employ a Self-Recursive Occupancy Predictor
(SROP) to progressively refine the occupied state of the
3D space, thereby providing a more precise 3D geometric
state for renovating the 3D features. Subsequently, we pro-
pose a sparse occlusion-aware attention mechanism to reno-
vate the 3D features. Our attention mechanism differs from
prior methods [15, 17, 19], which relied solely on depth in-
formation to renovate the 3D features. Instead, we utilize
the occupied state in conjunction with bin depth informa-
tion to accurately model the 3D spatial features. This ap-
proach provides details of local regions and makes the fea-
tures more geometrically accurate. Furthermore, leveraging
the accurate occupied state identified by SROP, we employ
the Occlusion-Aware Temporal Self-Attention (OA-TSA) to
model dynamic information using a recurrent strategy, sup-
plying detailed short-term temporal information.

To efficiently integrate long-term temporal fusion, we
propose a novel sparse-based method for temporal fusion
modeling. It also avoids redundant information in historical
data and preserves spatial information. Specifically, based
on the occupied state, we sample non-empty and empty re-
gions into long-term and short-term streams, respectively.
Then, we incorporate the occupied state into both streams
and employ a parallel strategy to fuse the temporal infor-
mation within these two streams. This approach not only
reduces computational costs but also retains the spatial in-
formation within the 3D space. Our contributions can be
summarized as follows:

* We introduce an explicit state-based modeling approach
designed to renovate the 3D features both spatially and
temporally.

* We propose a sparse, occlusion-aware mechanism that
provides more accurate geometric 3D features. Addition-
ally, we propose a novel sparse-based method for mod-

eling long-term dynamic information. This approach not
only reduces computational costs but also ensures spatial
consistency.

* Our method achieves a RayloU of 41.7% on Occ3D [40]
and a RayloU of 40.8% along with a mAVE of 0.44 for
occupancy and scene flow prediction on OpenOcc [38],
while also reducing the training memory usage to 8.7GB,
as shown in Fig. 1b.

2. Related Work
2.1. Camera-based 3D Occupancy Prediction

Occupancy, as proposed by [29, 35], focuses on the contin-
uous representation of 3D scenes. MonoScene [5] leverages
monocular images for semantic scene completion, employ-
ing a 3D UNet to process voxel features. TPVFormer [9]
lifts image features into 3D TPV space and expands them
into voxel representations for 3D occupancy prediction. Oc-
cFormer [52] proposes a dual-path transformer for encoding
the dense 3D volume features.

Considering the inherent sparsity of 3D scenes, recent
methods [14, 18, 21, 28, 39, 46] optimize computational ef-
ficiency by processing only non-empty voxels using sparse
convolutions or attention mechanisms. VoxFormer [14]
utilizes a depth-based query proposal network to generate
sparse query proposals for 3D-to-2D cross-attention. SGN
[28] introduces a dense-sparse-dense framework that dy-
namically selects sparse seed voxels and employs hybrid
guidance to enhance the convergence of semantic diffusion.
Symphonize [10] reconstructs the 3D scene using instance
queries. SparseOcc [21] proposes a fully sparse framework
that focuses exclusively on non-empty regions. However,
these sparse methods rely solely on the occupied state of
3D space to select the region of interest which ignores fea-
ture semantics or contextual relationships. Several meth-
ods [34, 46] leverage occupancy-based loss supervision to
refine 3D features, improving the spatial fidelity of fea-
ture representations. However, their exclusive reliance on
loss-driven optimization restricts their ability to model fine-
grained 3D spatial structures.

2.2, Camera-based Temporal Modeling

Temporal modeling is essential for camera-based percep-
tion due to the inherent challenge of lacking depth informa-
tion. When considering the modeling space, the methods
can be divided into two main categories: image feature-
based [19, 20, 22, 23, 43] and 3D feature-based [12, 13,
15, 33, 38, 42, 47, 51]. Image feature-based temporal mod-
eling methods utilize multi-frame image features to pro-
vide dynamic information. For instance, PETR [22, 23]
projects 3D points onto multi-frame image features to gen-
erate implicit 3D features for modeling temporal informa-
tion. Sparse4D [19] creates 4D keypoints based on 3D an-
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Figure 2. The overall architecture of STCOcc. The STCOcc framework is primarily composed of four integral modules: a feature
extractor that captures image features and depth distribution, a 3D coarse encoder that generates multi-resolution coarse voxel features, a
multi-stage spatial-temporal cascade decoder that incrementally renovates these coarse voxel features in both spatial and temporal dimen-
sions, and a head module designed to leverage the refined voxel features for the prediction of 3D occupancy and scene flow.

chors and projects these points to aggregate features from
multi-frame image features. SparseBEV [20] adaptively
generates sampling points based on the query features.

On the other hand, 3D feature-based methods model
temporal features in BEV or voxel space. BEVFormer [15]
designs a temporal self-attention mechanism to recursively
fuse BEV features. OccNet [38] extends this paradism
to voxel-based temporal self-attention to recursively fuse
voxel feature. SOLOFusion [33] uses a parallel strategy
to model BEV-level long-term information. We propose a
novel sparse approach to model long-term 3D features.

3. Methods

3.1. Overall Architecture

An overview of STCOcc is presented in Fig. 2. Along
the timestamp, we take the multi-view images as video se-
quence. At current frame ¢, multi-view images are first
processed by the Feature Extractor to obtain image fea-
tures and depth distribution. The 3D Coarse Encoder uses
the image features and depth distribution to create multi-
resolution coarse voxel features via LSS-based transforma-
tion [12, 13, 36]. The Spatial-Temporal Cascade Decoder
then progressively renovates these voxel features spatially
and temporally, stage by stage. Finally, the Head module
utilizes the refined voxel feature to predict occupancy and
scene flow.

Feature Extractor. At each time ¢, the feature extractor
initially uses an image backbone (e.g., ResNet [7]) to ex-
tract multi-view features F; = {F/ e RExHxW3iNe

j=1
where Ffj represents the features of the j-th camera view
at time ¢, and N, is the number of cameras. Then, the depth
network [12, 13] processes these image features to predict
the bin depth distribution D; = {D] € RPvinxHxWyHe |

3D Coarse Encoder. The 3D coarse encoder adheres to
the Lift and Splat framework as delineated in the LSS
paradigm [12, 13, 36]. In the Lift phase, each pixel within
the 2D image feature planes F; is projected into the 3D
voxel space guided by the predicted bin depth distribu-
tion D;. Subsequently, the Splat phase consolidates the
feature values of pixels falling within each voxel through
voxel pooling [12, 13, 36], thereby constructing the coarse
voxel feature V¢ € REXXXYXZ  gubsequently, we en-
gage a lightweight voxel encoder (e.g. ResNet3D-18 [7])
to produce multi-resolution coarse voxel features V,° =
(Vi e ROXXixYixZi | j = 1,2 ... N}, where X; =
=7, Y; = 50o—5. Zi = 58—, and N is the number of
processing stages.

3.2. Spatial-Temporal Cascade Decoder

To explicitly model the spatial and temporal information
into features with the occupied state of 3D space, we in-
troduce a spatial-temporal cascade decoder that renovates
the 3D coarse voxel features V,° through a multi-stage pro-
cess. As depicted in Fig. 2, the decoder comprises two pri-



mary components: Occlusion-Aware (OA) transformer lay-
ers, which accurately capture spatial and short-term tempo-
ral information, and a sparse-based temporal fusion module
that employs a first-in, first-out (FIFO) memory sequence to
encode long-term temporal information.

At each stage ¢, we refine voxel feature in BEV space
rather than in voxel space. Initially, we fuse the coarse voxel
feature ‘A/tl with the refined voxel feature from the previ-
ous stage output V"', and then project it into the BEV
representation to obtain B to € REXXixYi a5 the input
of OA transformer. We subsequently apply L layers OA-
Transformer, which is analogous to the approach in [15],
to refine Bf ;. This transformer layer includes three spe-
cialized modules: the Self-Recursive Occupancy Predictor
(SROP), OA Temporal Self-Attention (OA-TSA), and OA
Spatial Cross-Attention (OA-SCA). The SROP is designed
to provide an accurate occupied state of the 3D space for
each stage. The OA-TSA captures short-range temporal
dynamics within the BEV space. The OA-SCA explicitly
utilizes the occupied state to address the ambiguous projec-
tion problem [15, 17], which transfers geometric 2D feature
information into the 3D space.

After the OA-Transformer processes the features, the re-
fined BEV features B ¢ are converted back to voxel form V2
using the occupied weight /. Subsequently, we leverage
the occupied state of the 3D space to guide a novel sparse-
based approach for modeling long-term temporal informa-
tion, thereby obtaining the output V;' at time t. V! is up-
sampled by a factor of 2 for the next stage of refinement.

3.2.1. Self-Recursive Occupancy Predictor

To provide a more accurate representation of the occupied
state of 3D space and to mitigate the one-off selection is-
sues present in previous methods [14, 21, 28]. We draw
inspiration from earlier studies [19, 45, 48] and design the
self-recursive occupancy predictor. This predictor employs
successive transformer layers to progressively refine the oc-
cupied state layer by layer. Specifically, at each layer [, it
utilizes a simple Multilayer Perceptron (MLP) to recover
the height of B 1 to voxel space and predict the occu-
pancy weights W/, € R¥:*¥:xZ The process of the self-
recursive occupancy predictor can be described as follows:

th—fl( 21)+0¢1th 15 (1

The function f%(-) corresponds to the occupancy predictor
in stage 7, which shares the same weights across different
layers. The parameter ! signifies the effect of layer | — 1,
a learnable parameter initialized to 0.5. At each stage, the
initial Wti,O is derived by upsampling the occupied weights
from the previous stage, except that it is set to zeros in the
first stage.

3.2.2. OA Temporal Self-Attention

The temporal modeling is crucial for representing the dy-
namic driving scene [15]. Given the historical BEV fea-
ture Bti_l(discussed in Sec. 3.2.4), we align it with the
current feature B}, via the motion of the ego-vehicle. To
efficiently model the dynamic information, we propose
Occlusion-Aware Temporal Self-Attention (OA-TSA) to fo-
cus the temporal modeling on the non-empty space. The
OA-TSA is represented by:

TSA0A(Quy, B,W) = WeyFa(Qoy,0,Way), ()

beB

where (), , denotes the BEV feature located at p = (x, y)
and B = {Bt l,BZ 1} W € RX*Yi is the average of W;l
along the z-axis, and F; signifies the deformable attention
mechanism [53]. w,,, represents the occupied weights W
at position p. Unlike the vanilla deformable attention [53],
the offsets are predicted by the concatenation of W and B.
By reweighting the TSA, we enable the model to focus more
effectively on the dynamic information within the 3D space.

3.2.3. OA Spatial Cross-Attention

To explicitly utilize the occupied state to renovate the 3D
features, we propose the Occupancy-Aware Spatial Cross-
Attention (OA-SCA), which leverages the occupied state to
enhance geometric features.

We first revisit the vanilla Spatial Cross-Attention
(SCA) [15] as follows. As shown in Fig. 3, it samples V.. ¢
3D points X = {x = (z,y,2,)|h = 1,2--- , N,y } with
different height for each (), and projects these 3D points
to 2D image feature planes F; to obtain corresponding fea-
tures. Formally, the SCA can be expressed as:

SCA Q:r TI’Ft Z]:d Qw y7 ) ) (3)

xeX

To simplify our initial analysis, we consider a scenario with
a single camera, P(-) is the projection matrix that projects
points from the 3D space onto the feature plane. The pro-
jection process can be mathematically represented as:

d-[u v 1]"=P-[2 y z 1]", @
where d denotes the depth of the point (u,v) on the 2D
image plane. This 3D to 2D transformation introduces am-
biguity, as different 3D points along the same projection ray
map to identical 2D coordinates and are assigned the same
features Fluv)»as illustrated in Fig. 3, where even the green
points corresponding to empty areas receive the same fea-
ture.

To address this ambiguity, previous methods [17, 19]
propose utilizing depth information to reweight the features
of sampled points. However, these methods overlook the
precision of the predicted depth and the state attributes of
the sampled features. In contrast, our approach is inspired
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Figure 3. Illustration of OA-SCA. Due to the projection pro-
cess, sampled points along the same ray in the feature plane are
assigned identical features, even when they represent empty voxel
space, as depicted by the green points. To address this limitation,
our approach integrates depth and occupancy information to as-
sign appropriate weights to the sampled points, thereby enhancing
the differentiation of features along each ray.

by volume rendering techniques [27, 31], which allows us
to renovate the features of sampled points more effectively.
The volume rendering can be represented as:

Ny
C=) Tuon-cn 5)

n=1

where C represents the expected value of light emitted by
particles within the volume as a ray samples [V, points. o,
denotes the density at each point, 7, is the transmittance,
and ¢, is the corresponding color value. This physical func-
tion is analogous to the reverse processing of SCA, where
C corresponds to F{, ,) in the image plane, and ¢;, corrre-
sponds to the sampled point features, as illustrated in Fig. 3.
Based on above observation, our propose OA-SCA is de-
signed to address the ambiguity inherent in vanilla SCA.
Furthermore, to maintain the sparsity of the model, we em-
ploy probability sampling to select 3D reference points for
refinement. The OA-SCA can be formulated as:

SCA0A(Quy. Fr) = > 0Fu(Qay P(X),Fy), (6)

xeXs

where X5 = {x € X | wx > uy}. During training, uy fol-
lows a truncated normal distribution (0.5, 1). For stable in-
ference, uy is set to 0.5. This sampling approach allows our
method to account for the uncertainty region during train-
ing. wy is the reference point x corresponding occupied
weight. The reweighting parameter Qy = wy - Py, for each
3D point x, 3 can be calculated as:

ﬁ = exXp ( mln(|dr — (d; — Ad)| ) |d'r - (d;« + Ad)|)2>

202
@)
d, and d!. represent the depth attributes of the reference
point x respectively analogous to z and d in Eq. (4), they de-
note the distance of the sampled point from the ego-vehicle
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Figure 4. Illustration of Sparse Temporal Fusion. We imple-
ment temporal fusion using a parallel strategy in a sparse manner,
focusing only on modeling the sampled features.

and the distance of the ray’s corresponding object from the
ego-vehicle, respectively. It should be noted that d,. is de-
rived from the predicted bin depth distribution D, and is
transformed into relative depth, while Ad represents the bin
interval. The parameter o serves as an adjustment factor for
d, and d!., enabling fine-tuning of the depth matching toler-
ance. By default, o is set to 2, offering a balance between
strict and lenient matching. This design takes into account
both the attributes of bin depth distribution and the state of
the sampled point, enabling a more accurate modeling of
3D spatial information.

3.2.4. Sparse Temporal Modeling

To integrate long-term historical information into the fea-
ture representation, at each stage ¢, we maintain a stream-
ing history memory bank that adheres to the first-in, first-
out rule to dynamically fuse information using a parallel
strategy. Inspired by the SlowFast [6] and considering the
redundancy in 3D space, we decouple the non-empty and
empty regions into long-term and short-term streams, re-
spectively. The long-term stream models the non-empty re-
gion to capture long-term dynamic information, while the
short-term stream focuses on the empty region, modeling
the overall 3D space in a short-term manner.

For clarity, we consider one stream as an example, as
shown in Fig. 4. Given the current refined voxel feature
Vi and the occupied weights W/, we first apply a top-k
sampling method to extract the seed feature S’t’ € RExNs
and corresponding occupied state wi € R%*Ns where C,
represents the embedding dimensions for occupied weights.
Utilizing the position of S; and the ego-pose transformation
matrix Ttt_J from frame ¢ to frame ¢ — j, we can retrieve the
corresponding historical feature S} ;- We then concatenate
all the corresponding historically sampled features with w?,
and subsequently apply MLP to fuse the information along
the channel dimension:

StiZMLP([ ts z—lv"' ) Z—k?wﬂ) (®)

Finally, we add S} to the corresponding position in th
By default, at each stage, we use 7; frames to model the
long-term stream and % frames to model the short-term
stream. At each stage i, the fusion output V! is appended to



Method | Backbone Input Size Epochs | RayloU;m(%)1 RayloUpy (%)t RayloUsn(%)1 | RayloU(%)1 Memory(G)J.
BEVFormer™ [15] R101 1600 x 900 24 26.1 329 38.0 324 24.1
RenderOcc™ [32] Swin-B 1408 x 512 12 13.4 19.6 25.5 19.5 17.5
BEVDet-Occ™ [8] R50 704 x 256 90 23.6 30.0 35.1 29.6 10.2
FB-Occ™ [17] R50 704 x 256 90 26.7 34.1 39.7 335 9.6
SparseOcc (16f) [21] R50 704 x 256 24 29.1 35.8 40.3 35.1 23.7
COTRY [26] R50 704 x 256 24 36.3 41.7 45.1 41.0 18.3
OPUS-L [41] R50 704 x 256 100 34.7 42.1 46.7 41.2 12.1
STCOcc (ours) R50 704 x 256 36 36.2 42.7 46.4 41.7 7.7
STCOcc (ours) R50 1408 x 512 36 36.9 42.8 46.7 42.1 8.9

Table 1. Comparison of RayIoU (%) performance on the Occ3D-nus dataset. * indicates models trained with camera mask, T denotes

that official code was utilized to retrain the model.
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BEVFormer [15]
CTF-Occ [40]
TPVFormer [9]
OSP* [37]

R101 1600x900{24.1{26.9| 5.9 37.8 17.9 404 42.4 7.4 23.9 21.8 21.0 22.4 30.7 55.4 28.4 36.0 28.1 20.0 17.7
R101 1600x900| - |28.5]| 8.1 39.3 20.6 38.3 42.2 16.9 24.5 22.7 21.1 23.0 31.1 53.3 33.8 38.0 33.2 20.8 18.0
R101 1600x900{28.9(27.8| 7.2 38.9 13.7 40.8 45.9 17.2 20.0 18.9 14.3 26.7 34.2 55.7 35.5 37.6 30.7 19.4 16.8
R101 1600x900{20.7|41.2|10.9 49.0 27.7 50.2 55.9 22.9 31.0 30.9 30.3 35.6 31.2 82.1 42.6 51.9 55.1 44.8 38.2

SparseOcc (8f) [21]| R50 704 %256 |14.3{30.9{10.6 39.2 20.2 32.9 43.3 19.4 23.8 23.4 29.3 21.4 29.3 67.7 36.3 44.6 40.9 22.0 21.9
FB-Occ™ [16] R50 704x256 | 9.6 (39.113.6 44.7 27.0 45.4 49.1 25.2 26.3 27.9 27.8 32.3 36.8 80.1 42.8 51.2 55.1 42.2 37.5

ViewFormer® [11] | R50 704x256

41.912.9 50.1 27.9 44.6 52.9 22.4 29.6 28.0 29.2 35.2 39.4 84.7 49.4 57.4 59.7 47.4 40.6

COTR™ [26] R50 704x256 |18.3{44.5{13.3 52.1 31.9 46.0 55.6 32.6 32.8 30.4 34.1 37.7 41.8 84.5 46.2 57.6 60.7 51.9 46.3

STCOcc™ (ours) R50 704x256 | 7.7 |44.6|15.3 52.9 31.6 46.4 55.9 31.5 32.6 32.1 34.5 39.5 42.5 83.6 47.8 56.4 60.1 50.8 44.8
STCOcc™ (ours) R50 1408x512| 8.9 [45.0/15.2 52.3 32.2 50.5 56.5 31.7 33.9 33.4 33.8 38.9 44.9 83.9 47.4 57.1 60.1 50.6 42.7

Table 2. Comparison of mIoU (%) performance on the Occ3d-nus dataset. * indicates models trained with camera mask.

the memory queue, and a BEV representation B! is stored
for the subsequent frame of OA-TSA. This strategy pro-
vides a long-term perspective for recurrent temporal mod-
eling and mitigates the gradient vanishing issue that is com-
monly encountered in previous recurrent temporal model-
ing methods [15].

3.3. Loss

We compute the occupancy loss for each stage, adopting
the Scene-Class Affinity Loss (L.q;) from MonoScene [5].
This loss is applied to both semantic and geometric pre-
dictions to ensure accurate scene understanding. Given the
sparsity and class imbalance inherent in 3D scenes, we also
utilize a weighted focal loss [16] combined with the Lovasz
loss [3]. The loss for each stage 7 is formulated as follows:

Loce = Lo + L3t + L focat + Liov- ©

occ sca scal

When considering the scene flow, we utilize the L1 loss
L4 to supervise only the foreground voxel, The overall loss
function is formulated as follow:

N
L= XLy + Lacpin + Y wi X L, (10)

=1

where L¢ptp, is the cross-entropy loss used to supervise the
depth network. w; is computed by 5x—.

4. Experiments

4.1. Experimental Setup

Dataset. To evaluate the performance of our model, we
utilize the Occ3D-nus dataset [40] for assessing 3D occu-
pancy prediction and the OpenOcc dataset [38] for evalu-
ating scene flow prediction. Both datasets are derived from
the NuScenes dataset [4], encompassing 600 outdoor scenes
for training, 150 for validation, and 150 for testing. Since
the Occ3D-nus dataset does not provide scene flow labels,
we have omitted the flow head when using this dataset. Ad-
ditionally, since NuScenes does not provide depth labels,
we follow previous methods [12, 13] by projecting LIDAR
points onto the image plane to serve as depth labels.

Metric. The mean Intersection-over-Union (mloU) is a
prevalent metric for assessing occupancy prediction per-
formance in the Occ3D-nus dataset. However, this met-
ric only accounts for the visible area at the current mo-
ment and may not fully reflect the model’s completion ca-
pabilities [21]. Consequently, we also employ Ray-Based



Method | Sup. Backbone Input Size |RayloU(%)T mAVE] Mem(G)|

OccNeRF-C [50] | C R101  1600x900 21.6 1.53
OccNeRF-L L R101  1600x900 31.7 1.59
RenderOcc [32] L R101  1600x900 36.7 1.63

Let Occ Flow [24]|C+L  R101 1408512 40.5 1.45

OccNet [38] 3D RI01  1600x900 39.7 1.61 -
BEVFormer! [15]| 3D R50  1600x900 28.1 1.12 26.0
FB-Occ' [16] 3D R50 704 %256 323 0.83 11.1
SparseOccf [21] | 3D R50 704 %256 334 0.87 15.8
STCOcc (ours) ‘ 3D R50 704 x256 ‘ 40.8 0.44 8.7

Table 3. Comparison of RayloU (%) and mAVE performance
on the OpenOcc [38] dataset. C and L denote Camera and Lidar
supervision. T denotes that we utilize the offical code and add the
flow head to produce the results.

IoU (RayloU) [21] to evaluate occupancy prediction perfor-
mance. RayloU is computed at three distance thresholds: 1,
2, and 4 meters. The final ranking metric is obtained by
averaging the results across these thresholds. Additionally,
we assess the performance of scene flow prediction using
the mean absolute velocity error (mAVE) [38] across de-
fined categories (e.g., car, truck). The mAVE is calculated
for the set of true positives within a query ray threshold of
2 meters.

Implementation Details. We adopt the depth network
from BEVStereo [12] and configure our model with three
processing stages. Within each stage, the number of lay-
ers in the OA transformer is set to 2. The amount of his-
torical information preserved for each stage is 16, 8, and
4, respectively. Unless specified otherwise, all models use
the AdamW optimizer [25] with a global batch size of 16.
Moreover, because our sampling strategy results in variable
GPU memory costs, we report the maximum value in our
results.

4.2. Main Results

Main Results on Oce3D-nus. As shown in Tab. | and
Tab. 2. We compare our method with previous state-of-the
art methods on 3D occupancy task. Our methods achieves
the state of the art performance 41.7% in RayloU and 44.6%
in mloU, which is particularly noteworthy given the signifi-
cantly lower training costs of 7.7GB, as opposed to the high
training costs associated with COTR (18.3 GB) and OPUS-
L (12.1 GB). Furthermore, since our spatial refinement pro-
cess is dependent on the image size, we resize the input to
1408 x 512 and achieve improved results in terms of RayloU
and mloU.

Main Results on OpenOcc. As demonstrated in Tab. 3,
we conducted experiments on the OpenOcc dataset to assess
the performance of our model in terms of occupancy and
scene flow. Our approach, which employs a smaller back-
bone (ResNet-50) and a reduced image input size (704 x
256), achieves RaylIoU scores of 40.8% and mAVE of 0.44.

Spatial ‘ Temporal ‘ Metric
OA-SCA  SROP ‘ STF OA-TSA ‘ RayloU(%)t mAVE|] Mem(G)}
35.1 1.32 5.5
v 35.7 1.27 5.7
v v 36.0 1.20 5.7
v v v 38.0 0.69 8.6
v v v v 38.4 0.63 8.7

Table 4. Ablation study on the each component. SROP refers
to the Self-Recursive Occupancy Predictor, OA-SCA refers to the
Occupancy-Aware Spatial Cross Attention, OA-TSA refers to the
Occlusion-Aware Temporal Self-Attention, and STF refers to the
Sparse Temporal Fusion.

(a) W OA-SCA. (b) W/O OA-SCA.

Figure 5. Ablation on the OA-SCA module. We visualize the
features after refinement with and without the OA-SCA module.

These results surpass those of both OccNet [38] (which uses
ResNet-101 with an input size of 1600 x 900) and Let Occ
Flow [24] (which also uses ResNet-101 with an input size
of 1408 x 512).

4.3. Ablation Study

To investigate the impact of various modules, we perform
ablation experiments on the OpenOcc dataset [38]. It is
important to note that the ablation experiments were con-
ducted on half of the training dataset and then evaluated on
the full validation set. Specifically, we used the first 300
sequences to constitute half of the training dataset.

The Effectiveness of Each Component. In Tab. 4, we
demonstrate the effectiveness of each component in our
model. For the baseline, we omit the OA-SCA and make
the occupancy predictor independent in each stage, simi-
lar to previous one-off selection methods [21, 38]. This
baseline achieves a RayloU of 35.1% and a mAVE of 1.32
with a memory cost of 5.5GB. Integrating the OA-SCA into
the baseline results in a 1.7% increase in RayloU and a
3.7% increase in mAVE, with an additional memory cost
of only 0.2GB. Introducing the SROP further enhances
the model’s performance without incurring any additional
memory costs. Utilizing long-term temporal fusion and
the OA-TSA, we achieve a 6.3% increase in RayloU and
a 45.5% increase in mAVE, with a memory cost of only
1.9GB.



Ground Truth
ER - -

WA i
Figure 6. Qualitative results on Occ3d-nus validation set. As depicted in the red circle, our method delivers detailed predictions for
objects such as cars and trucks, while also offering clear boundary delineations for structures like buildings and vegetation.

The Effectiveness of Sparse Temporal Modeling. In
Tab. 5, we compare several representations in temporal
modeling. The BEV modeling approach [33], while sav-
ing computation when modeling long-term history, sac-
rifices spatial information of the 3D space, resulting in
poorer performance in occupancy prediction tasks. Our
sparse modeling approach outperforms voxel-level mod-
eling approach [16] in both effectiveness and computa-
tional cost. Furthermore, in Tab. 6, we compare our pro-
posed Occupancy-Aware Temporal Self Attention (OA-
TSA) with the vanilla Temporal Self Attention (TSA) [15].
Our method achieves superior performance in RayloU and
mAVE metrics, attributing this success to the guidance pro-
vided by occupied state modeling.

The Effectiveness of Occupancy-Aware Spatial Cross
Attention. In Fig. 5, we compare the features refined by
the OA-SCA module with those refined without it. It is ev-
ident that the OA-SCA module renovates the features, pro-
viding a more accurate geometric representation of the 3D
scene, which is crucial for precise spatial modeling. More-
over, the OA-SCA module selectively enhances the fore-
ground objects in the 3D scene, significantly improving the
model’s discriminability. Furthermore, in Tab. 7, we com-
pare the vanilla Spatial Cross Attention (SCA) [15] and the
Depth-Aware Spatial Cross Attention (DA-SCA) proposed
by FB-BEV [17] with our OA-SCA. It is observed that, due
to inaccurate spatial modeling, neither SCA nor DA-SCA
significantly improves performance. In contrast, Our ex-
plicit state-based modeling approach leverages the occupied
state to accurately capture detailed spatial information.

4.4. Visualizations

In Fig. 6, we present the BEV visualizations on the Occ3D-
nus validation set. In comparison to implicit learning-based

SparseOce
s

Representation | Frame | RayloU(%)t mAVE| Mem(G)|
BEV [33] 8 36.8 0.81 6.7
Voxel [16] 8 37.2 0.73 7.8
Sparse (ours) 8 37.5 0.71 7.3
BEV 16 374 0.77 7.6
Voxel 16 38.0 0.64 9.8
Sparse (ours) 16 38.4 0.60 8.7

Table 5. Ablation on the Sparse Temporal Fusion. We com-
pare the traditional representations of BEV and voxel to our sparse
modeling approach across various frame numbers.

Method RayloU(%) mAVE Method RayloU(%)
W/O TSA [15] 37.9 0.69 ;"C’g SCATI5] g;g
TSA 38.0 0.67 DA-SCA [17] 37.7
OA-TSA 38.3 0.63 OA-SCA 383

Table 6. Ablation on the OA-TSA Table 7. Ablation on the
Module. OA-SCA Module.

approaches [16, 21], our explicit state-based method pro-
duces clearer boundaries for objects such as cars, buildings,
and vegetation.

5. Conclusions

We propose an explicit state-based modeling approach to
capture detailed geometric information in 3D space and
integrate long-term dynamic information effectively. Our
proposed STCOcc framework incorporates occlusion-aware
mechanisms to enhance 3D features in both spatial and tem-
poral aspects, thereby achieving better performance in 3D
occupancy and flow prediction. The results demonstrate the
efficacy of our paradigm, underscoring its strong potential
for applications in downstream tasks.
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